If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-212x+120=0
a = 49; b = -212; c = +120;
Δ = b2-4ac
Δ = -2122-4·49·120
Δ = 21424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21424}=\sqrt{16*1339}=\sqrt{16}*\sqrt{1339}=4\sqrt{1339}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-212)-4\sqrt{1339}}{2*49}=\frac{212-4\sqrt{1339}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-212)+4\sqrt{1339}}{2*49}=\frac{212+4\sqrt{1339}}{98} $
| r+5+r=7 | | 6.3y-2.5=17.9 | | 4t-1=2 | | 12(3+x)=36 | | -16=9x-x | | 5x-3=8+6x | | 8=m+3m | | 5^2+9^2=c^2 | | 3^2+3y^2=3 | | 3u+10=11 | | -3-(-28)=x/5 | | 5^2+9^2=c^ | | 2f+9=12 | | 2q3-5q2=-1000 | | -4x-3=0 | | 3=3m-1 | | 2/3x+4=3/5x-2;x | | 2a+16=28 | | 3u+13=15 | | 2x+(x-1)-x-3(x+4)=0 | | 8r+24=30 | | 7(x-5)=42;x | | 1.2m-4.3=1.7 | | 6x-100+4x=180 | | 16=10+2k | | 10*y=5.4186 | | 35=5+10x | | 1/2(x-14)=7+4x | | 3g+15=84 | | 6x+10x=60 | | 7x-72=3x-28 | | 7x+2=16;x |